
1

SIMULATING SENSORNETWORKS IN NS-2
Ian Downard

Naval Research Laboratory
Code 5523

4555 Overlook Ave
Washington DC, 20375-5337

downard@itd.nrl.navy.mil

Abstract— Optimizing sensor networks involves address-
ing a wide range of issues steaming from limited energy
reserves, computation power, communication capabilities,
and self-managing sensor nodes. The ns-2 simulation
environment is a flexible tool for network engineers to
investigate how various protocols perform with different
configurations and topologies. This paper describes how we
extended the ns-2 framework to include support for sensor
networks, and illustrates their utility with an experiment
examining Mobile Ad Hoc Network (MANET) routing
within a dynamic sensor network.

I. I NTRODUCTION

Recent advances in processing, storage, and commu-
nication technologies have advanced the capabilities of
small-scale and cost-effective sensor systems to support
numerous applications. Sensor networks that detect haz-
ardous chemical or biological agents in complex urban
infrastructures could be a killer application for homeland
security. Much of the research in sensor networks is
funded for military tasks, but applications such as forest
fire detection and rush-hour traffic monitoring exemplify
the versatility envisioned for this rapidly expanding
technology.

Many successful sensor applications have been de-
ployed in very specialized networks, such as UC-
Berkeley’s Smart Dust [1], MIT’sµ-Adaptive Multi-
domain Power aware Sensors [2], and UCLA’s Wireless
Integrated Sensor Networks [3]. But the wide spread de-
ployment of wireless networks has generated more pos-
sibilities for mobile ad hoc networks of self-governing
nodes that can serve numerous sensor applications with-
out manual reconfiguration.

While operating in this context, we define a sensor
network as an autonomous, multi-hop, wireless network
with nondeterministic routes over a set of possibly het-
erogeneous physical layers. In other words, routing will
occur throughout the network at nodes configured in ad
hoc mode. Our long-term objective is to evaluate how

phenom

channel

data

channel

(802.11)

Sensor

node
phenom

channel

data

channel

(802.11)

Sensor

node

Fig. 1. This is the foundation of the sensor network model used in
ns-2

well current routing layer standards support the require-
ments of various other layers in these sensor networks.
We are including the ns-2 simulation environment in
these evaluations.

The primary purpose of this project is to establish
a foundation in ns-2 for simulating sensor networks.
This foundation, illustrated in Figure 1, consists of dual-
homed sensor nodes that are tapped into an 802.11 chan-
nel for communicating with other network stations and
into a phenomenon channel for detecting some physical
phenomenon. This work is a small contribution that
should benefit sensor network research where simulation
is appropriate. It is an effort to aid the analysis of
various sensor network configurations under the demands
of specific sensor applications.

The paper begins with an overview of the ns-2 sim-
ulation environment, followed by a description of our
extensions to ns-2 and guidelines for using them in
simulations. We conclude with a section to illustrate
a sensor network simulation and a final section to list
relevant areas for future research.

II. RELATED WORK

Mochocki and Madey [4] administrate a project whose
objective includes building a flexible simulation tool
specifically for sensor networks. Their on-going research
emphasizes heterogeneity throughout a simulation envi-
ronment based on the SWARM [6] software package.
They cater to simulations of MANET nodes, each with
unique storage, processing, and sensing capabilities in

2

Application Layer

CBR

FTP

TELNET

Transport Layer

TCP

UDP

Network Layer
 Data Link Layer

802.11

TDMA

SMAC

Physical Layer

Radio propagation

models with r^-4

attenuation:

Free Space,

Two Ray Ground,

Shadowing

Omni-directional

antenna model

with unity gain

DSDV

DSR

TORA

AODV

OLSR

Fig. 2. These are some of the paradigms and protocols available
for wireless networking in ns-2. Some protocols like OLSR [8]
and SMAC [9] have not yet been incorporated into USC’s ns-2
distributions [7], but they can be retrieved from their respective
developers’ sites

order to investigate details about energy conservation,
routing, medium access, and application protocols.

Park, Savvides, Srivastava [5] developed extensions
to ns-2 for modeling sensor networks with an emphasis
on sophisticated modeling of energy consumption and
emulation (i.e. interfacing with real world sensor nodes).
Unfortunately, their work has not been updated to sup-
port subsequent releases of ns-2 since October, 2000.

III. NS-2 OVERVIEW

The ns-2 simulation environment [7] offers great
flexibility in investigating the characteristics of sensor
networks because it already contains flexible models
for energy constrained wireless ad hoc networks. In the
ns-2 environment, a sensor network can be built with
many of the same set of protocols and characteristics as
those available in the real world. The mobile networking
environment in ns-2 includes support for each of the
paradigms and protocols shown in Figure 2. The wireless
model also includes support for node movements and
energy constraints. By leveraging the existing mobile
networking infrastructure, we added the capability to
simulate sensor networks.

IV. T HE EXTENDED NS-2 ARCHITECTURE

A. Sensor Network Extensions

The only fundamental aspect of sensor networks miss-
ing in ns-2 was the notion of a phenomenon such as
chemical clouds or moving vehicles that could trigger
nearby sensors through a channel such as air quality
or ground vibrations. Once a sensor detects the “ping”
of a phenomenon in that channel, the sensor acts ac-
cording to the sensor application defined by the ns-2
user. This application defines how a sensor will react
once it detects its target phenomenon. For example, a
sensor may periodically send a report to some data
collection point as long as it continues to detect the
phenomenon, or it may do something more sophisticated,
such as collaborate with neighboring sensor nodes to

more accurately characterize the phenomenon before
alerting any outside observer of a supposed occurrence.
For each sensor network there is a unique sensor ap-
plication to accomplish phenomena detection, such as
surveillance, environmental monitoring, etc. With ns-2,
we have provided the facility to invoke sensor appli-
cations by phenomena. With these sensor applications,
we can study how the underlying network infrastructure
performs under various constraints.

We modeled the presence of phenomena in ns-2
with broadcast packets transmitted through a designated
channel. The range of phenomena is the set of nodes
that can receive the PHENOM broadcast packets in that
channel1. This pattern will follow whichever radio propa-
gation model (free space, two ray ground, or shadowing)
included with the phenomenon node’s configuration.
These propagation models roughly cover a circle, but
other shapes could be achieved by varying the range
of PHENOM broadcast packets and creatively moving
a set of phenomenon nodes emanating the same type of
phenomenon.

Emanating PHENOM broadcast packets is accom-
plished by the “PHENOM routing protocol”2, which
simply broadcasts PHENOM packets with a certain
configurable pulse rate. When a PHENOM packet is re-
ceived by a node listening on the phenomenon channel, a
receive event is passed to that node’s sensor application.

B. Additions to NS-2

Our sensor network simulations have phenomenon
nodes that trigger sensor nodes, but the traffic sensor
nodes generate once they detect phenomena depends on
the function of the sensor network. For example, sensor
networks designed for energy efficient target tracking
[10] would generate more sensor-to-sensor traffic than a
sensor network designed to provide an outside observer
with raw sensor data. This function is defined by the
sensor application which is intended to be customized
according to the traffic properties associated with the
sensor network being simulated. The objects and func-

1This reflects the range of sensitivity of the sensors. For example,
PHENOM broadcasts with a long range would simulate highly
sensitive sensors. The sensitivity of a single sensor can be controlled
by setting the receive and carrier sense thresholds in defined in
mac/wireless-phy.cc .

2This functionality best fit into ns-2’s existing ad hoc wireless
networking infrastructure as a routing protocol, even though it does
not actually route at all. The MAC layer it operates above must be
specified in the phenomenon node’s configuration. Although real-
world phenomena can interfere in a variety of ways, we ignore this
aspect and use the basic “Mac” class, which seems to prevent channel
contention.

3

tions we have just described are implemented in the
following files:

phenom/phenom.cc,h: This file implements the
PHENOM routing protocol used for emanating phe-
nomena. It includes parameters for the pulse rate and
the phenomenon type (Carbon Monoxide, heavy seismic
activity, light seismic activity, sound, or generic). These
types are just names that can be used to identify multiple
sources of phenomena in trace files. The pulse rate is the
only parameter that actually controls how a phenomenon
emanates.

sensornets-NRL/sensoragent.cc,h: The
ns manual [11] describesagentsas “endpoints where
network-layer packets are constructed or consumed”.
Sensor nodes use asensor agentattached to the
phenomenon channel for consuming PHENOM packets,
and a UDP or TCP agent attached to the wireless
network channel for constructing packets sent down
from the sensor application. Sensor agents act as a
conduit through which PHENOM packets are received
and processed by sensor applications. The sensor agent
does not actually look at the contents of the PHENOM
packet, it simply marks the packet as received and passes
it to the sensor application. This agent is implemented
in sensoragent.cc .

sensornets-NRL/sensorapp.cc,h: The
sensor application defined in this file utilizes node
color and generates sensor reports to show when
the corresponding sensor node detects phenomenon3.
Specifically, when the node is receiving PHENOM
packets, this application changes the node color
to red, activates an “alarm” public variable, and
sends a sensor report of MESGSIZE bytes to the
sink node of a UDP (or TCP) connection once per
TRANSMIT FREQ seconds. When the node has not
received a PHENOM packet in the timeout period
specified by SILENTPHENOMENON, then the node
color changes back to green. If node color is desired to
illustrate energy levels instead of sensor alarm status,
then that aspect of the application can be disabled with
DISABLE COLORS.

A visualization of this sensor application is shown in
Figure 3.

sensornets-NRL/phenom packet.h: This
file defines the structure of PHENOM packets. The five
phenomenon types defined here (CO, HEAVYGEO,
LIGHT GEO, SOUND, and TESTPHENOMENON)
correspond to Carbon Monoxide, heavy seismic
activity, light seismic activity, audible sound, and some

3The four environment variables that can be used to customize
this application are SILENTPHENOMENON, DISABLECOLORS,
MESG SIZE, and TRANSMITFREQ.

46

45

44

43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19
18

17

16

15
14

13

12

11

10
9

87

6

5

4

3

2

1

0

Fig. 3. Visualization of a simulated sensor network with 25
stationary sensor nodes, 20 mobile phenom nodes simulating a gas
cloud, and one stationary data collection point. The red sensor nodes
detect the phenomenon, the green ones do not. The phenomenon
nodes are large and blue, and the data collection point is the black
node in the far upper-right corner

generic phenomenon. These types are most useful for
simulations involving multiple phenomenon nodes, in
order to easily distinguish who a given sensor node is
detecting by looking at the ns-2 trace file.

C. Modifications to NS-2

Figure 4 shows where our extensions are arranged
within the ns-2 framework. The major additions and
modifications are explained below. Section IV-D shows
how our extensions fit into ns-2’s class hierarchy.

trace/cmu-trace.cc,h: The CMUTrace
class is used to print important parts of a packet to
the simulation’s trace file. Since we introduced a new
packet type for phenomena, we had to describe the
corresponding packet format in this class.

tcl/lib/ns-lib.tcl: This component of the
infrastructure interprets node configurations specified in
the ns-2 simulation script. Our extensions introduced
two new node types, the sensor node and the phe-
nomenon node. Therefore, we added some arguments in
the node-config function to accommodate them.

4

ns-2.26/

trace/

mac/

tcl/lib/

queue/

common/

ns-lib.tcl

ns-mobilenode.tcl

ns-namsupp.tcl

mac.cc

wireless-phy.cc,h

packet.h

cmu-trace.cc,h

priqueue.cc

phenom/

sensornets-NRL/

sensoragent.cc,h

phenom.cc,h

phenom_packet.h

sensorapp.cc,h

Fig. 4. This figure illustrates which files in the ns-2 framework were
modified (see left side) or added (see right side)

tcl/lib/ns-mobilenode.tcl: In ns-2’s vir-
tual world, we are using its existing capacity for multi-
channel wireless networking as a means to emanate phe-
nomena of various kinds. By using a dedicated channel
for phenomena, we can simulate the unique physical
medium that they occupy in the real world. Thus, as
shown in Figure 1, sensor nodes will need to have two
interfaces, one to the 802.11 channel and one to the
PHENOM channel. We implemented this kind of “multi-
homed” capability inns-mobilnode.tcl .

common/packet.h: Each packet in ns-2 is as-
sociated with a unique type that associates it with the
protocol that it belongs to, such as TCP, ARP, AODV,
FTP, etc. Since we created a new protocol for emanating
phenomena, we defined it’s corresponding packet type in
the packet.h header file.

mac/wireless-phy.cc: Ns-2 contains an en-
ergy model for wireless nodes that can be used to
investigate the benefits of various energy conservation
techniques, such as node sleeping or utilizing optimal
network densities. The model includes attributes for
specifying the power requirements of transmitting pack-
ets, receiving packets, or idly standing by during times of
network inactivity. Sensing phenomena is a process that
may consume power at another rate, so it is important

PHENOM

PHENOMHelloTimer

agent

Agent

Application

agent_

Connector

Trace Queue< T >

NsObject

target_
drop_

Handler

Event

handler_

QueueHandler

EventTrace

et_

BaseTrace

pt_

app_

Process target_

ns_addr_t

here_
dst_

OldValue

oldValueList_

next_

logtarget

htimer

intr

next_
prev_

Packet

PriQueue

ifqueue

DropTail

queue_

QueueElem< T >

tail_
head_

next_

T

data_

PacketQueue

q_

pq_

iter
tail_

head_

next_
free_

qh_

Fig. 5. Collaboration diagram for the PHENOM class

to consider this where sensor network simulations are
concerned. Inmac/wireless-phy.cc , we have in-
cluded the capability of specifying the amount of power
consumed by nodes while sensing phenomena.

Other small modifications were made to
mac/mac.cc , tcl/lib/ns-namsupp.tcl ,
and queue/priqueue.cc in order to facilitate the
second interface to the phenomenon channel on sensor
nodes, to fix a bug in ns-2’s node coloring procedure,
and to include the new PHENOM packet type into the
ns-2 framework, respectively.

D. The Extended NS-2 Class Hierarchy

The Doxygen documentation system [12] was used
to generate Figures 5, 6, and 7 that illustrate how our
extensions fit into ns-2’s class hierarchy. Dotted lines
show where a class is using the methods and members of
another class. Solid lines show where a class is inheriting
the methods and members from another class.

V. CAPABILITIES , GUIDELINES, AND CAVEATS.

This section describes the capabilities of our sensor
network extensions, gives some guidelines for configur-
ing simulations, and attempts to explain some areas of
likely confusion. In this section, we assume the reader is
already familiar with setting up mobile node simulations
in ns-2. For readers who are not, the following URLs
provide background:

http://nile.wpi.edu/NS/
http://www.isi.edu/nsnam/ns/

The easiest way to create sensor network simula-
tions is to use thescript maker.pl utility in the

5

SensorAgent

SensorApp

sensor_agent_ptr

Agent

Application

agent_

Connector

NsObject

target_
drop_

Handler

TimerHandler

Event

handler_

EventTrace

et_

BaseTrace

app_

Process target_

ns_addr_t

here_
dst_

OldValue

oldValueList_

next_

sensor_app

SilenceTimer

sensor_app_instance_

SendTimer

sensor_app_instance_ silence_timer

event_

next_
prev_

send_timer

Fig. 6. Collaboration diagram for the SensorAgent class

SensorApp

SilenceTimer

sensor_app_instance_

SensorAgent

sensor_app

SendTimer

sensor_app_instance_

Application

silence_timer

sensor_agent_ptr

send_timer

Fig. 7. Collaboration diagram for the SensorApp class

simulations aids directory distributed with our
extensions. This Perl script contains commonly used
parameters for setting up sensor network simulations and
automatically generates the often complex ns simulation
script. The remainder of this section describes how to
code a sensor network simulation into the ns simulation
script, without using thescript maker.pl utility.

Setting up a sensor network in ns-2 follows the same
format as mobile node simulations. The best way to
create your own simulation is to modify one of the
examples distributed with our code [13].

Places where a sensor network simulation differs from
a traditional mobile node simulation are listed below.
Setting upns , god , tracing, topography objects and
starting and stopping the simulation are all the same as
in traditional mobile node simulations.

1) Configure a phenomenon channel and data
channel. Phenomenon nodes should emanate in

a different channel than sensor nodes in order
to avoid contention at the physical layer. All
phenomenon nodes should be configured on the
same channel, even if they are emanating different
types of phenomena.

set chan 1 [new $val(chan)]
set chan 2 [new $val(chan)]

2) Configure a MAC protocol for the phenomenon
channel.Choose a MAC layer to use for emanating
phenomena over the phenomenon channel. Using
802.11 is not appropriate, since phenomena
should be emanating without regard to collisions
or congestion control. We suggest using the basic
“Mac” class instead, shown as follows:

set val(mac) Mac/802 11
set val(PHENOMmac) Mac

3) Configure phenomenon nodes with the PHENOM
“routing” protocol. Use node-config, just like with
mobile nodes, but specify PHENOM as the routing
protocol so the phenomenon is emanated according
to the methods defined inphenom/phenom.cc .
Also, be sure to configure in the channel and
MAC layer previously specified for phenomena
broadcasts. A sample node configuration statement
is shown below.

$ns node-config \
-adhocRouting PHENOM \
-channel $chan 1 \
-llType LL \
-macType $val(PHENOMmac) \
-ifqType Queue/DropTail/PriQueue \
-ifqLen 50 \
-antType Antenna/OmniAntenna \
-phyType Phy/WirelessPhy \
-topoInstance $topo \
-agentTrace ON \
-routerTrace ON \
-macTrace ON \
-movementTrace ON \
-propType Propagation/TwoRayGround

4) Configure the Phenomenon node’s pulse rate and
type. The two parameters that can be used to
customize phenomena are listed below. They are
both optional.

a) pulserate FLOAT

6

• FLOATmust be a real number.
• Describes how frequently a phenomenon

node broadcasts its presence.
• Defaults to 1 broadcast per second.

b) phenomenon PATTERN

• PATTERN must be any one of
the following keywords: CO,
HEAVY GEO, LIGHT GEO, SOUND,
TEST PHENOMENON corresponding to
Carbon Monoxide, heavy seismic activity,
light seismic activity, audible sound, and
some other generic phenomenon.

• This option is mostly useful for sim-
ulations involving multiple phenomenon
nodes, so that it is easier to distinguish who
a sensor node is detecting by looking at the
ns trace file.

• Defaults to TESTPHENOMENON.

The following source code illustrates how these
phenomena parameters can be set to emanate
Carbon Monoxide 10 times per second:

[$node (0) set ragent] \
pulserate .1 ;

[$node (0) set ragent] \
phenomenon CO ;

5) Configure sensor nodes.Sensor nodes must be
configured with the-PHENOMchannel attribute
and the-channel attribute.PHENOMchannel
must be the same as the channel you configured
the phenomenon node with. The other channel is
the channel that will be used for communicating
sensor reports. Sensor node configurations
must also specify a MAC protocol for the
phenomena channel and a MAC protocol (such
as Mac/802 11) for the channel shared with
other wireless nodes. This is done with the
-PHENOMmacType and -macType attributes.
PHENOMmacTypeshould be the same as the
macType used in PHENOM nodes, andmacType
should be the same as the macType used in other
nodes participating in the IP network. For example:

$ns node-config \
-adhocRouting $val(rp) \
-channel $chan 2 \
-macType $val(mac) \
-PHENOMchannel $chan 1 \
-PHENOMmacType $val(PHENOMmac)

If desired, a sensor node can be configured so
that a specified amount of energy will be deducted
from its energy reserve each time it receives a
phenomenon broadcast. To set this up, include the
following parameters in the sensor node’snode-
config routine:

-energyModel EnergyModel \
-rxPower 0.175 \
-txPower 0.175 \
-sensePower 0.00000175; \
-idlePower 0.0 \
-initialEnergy 0.5

where

• rxPower .175 indicates 175mW con-
sumed for receiving a packet of arbitrary size,

• txPower .175 indicates 175mW con-
sumed for transmitting a packet of arbitrary
size,

• sensePower .00000175 indicates
1.75µW consumed for receiving a PHENOM
broadcast packet, and

• initialEnergy 5 indicates a total energy
reserve of5J .

IMPORTANT CAVEAT:
Ns-2’s energy consumption model utilizes color to
illustrate when a node is about to exhaust its en-
ergy. In order to avoid confusion in the nam visual-
ization, the node coloring that is part of the sensor
application should be disabled with theDIS-
ABLE COLORSdefinition in sensorapp.cc .
(Remember to run make again to compile those
changes into the ns-2 executable). In addition
to DISABLE COLORS, some other sensor node
parameters can be specified insensorapp.cc .
These parameters are listed below:

• SILENT PHENOMENON is the seconds of
quiescence required for a sensor to go off it’s
alarming state. Example:
#define SILENT PHENOMENON .2

• MESG SIZE is the size (in bytes) of the mes-
sages to send to the gateway, or data collection
point, or whatever you want to call the sink
node attached to this sensor node (over UDP,
for example). Example:
#define MESG SIZE 256

• TRANSMIT FREQ is the frequency with
which a sensor node triggered by PHENOM
packets will send a message to the sink
node. Units are in seconds, so a message of
sizeMESGSIZE bytes will be transmitted to
the gateway node once for everyTRANS-

7

MIT FREQseconds in which the sensor node
has received one or more PHENOM packets.
Example:
#define TRANSMIT FREQ 0.1

6) Configure non-Sensor nodes, such as data
collection points, or gateways for the sensor
network. Nodes that are not sensor nodes or
phenomenon nodes, should not be configured with
a PHENOMchannel, since their only interface is
to the MANET network. This is done with the
-PHENOMchannel "off" attribute, as follows:

$ns node-config \
-adhocRouting $val(rp) \
-channel $chan 2 \
-PHENOMchannel "off"

7) Attach sensor agents.Create a sensor agent for
each sensor node, and attach that agent to its
respective node. Also, specify that all packets
coming in from the PHENOM channel should
be received by the sensor agent. In the following
example,$i would represent the node number
for the sensor node currently being configured.

set sensor ($i) [new \
Agent/SensorAgent]

$ns attach-agent $node ($i) \
$sensor ($i)

specify the sensor agent
as the up-target for the
sensor node’s link layer
configured on the PHENOM
interface, so that the
sensor agent handles the
received PHENOM packets
instead of any other agent
attached to the node.

[$node ($i) set ll (1)] \
up-target $sensor ($i)

8) Attach a UDP agent and sensor application to
each node (optional).How the sensor nodes react
once they detect their target phenomenon is a
behavior that should be defined in the sensor
application. One such application might involve
sensor nodes alerting a data collection point via
UDP with information about the phenomenon. The
following example illustrates how an application

like that could be setup. Again,$i represents the
node number for the sensor node currently being
configured.

set src ($i) [new Agent/UDP]
$ns attach-agent $node ($i) \

$src ($i)
$ns connect $src ($i) $sink
set app ($i) [new \

Application/SensorApp]
$app ($i) attach-agent $src ($i)

9) Start the sensor application.The sensor node
can receive PHENOM packets4 as soon as the
sensor agent is attached to the node. Since
the sensor agent does nothing but notify the
sensor application of received phenomenon
broadcasts, the sensor node does not visibly react
to PHENOM packets until the sensor application
has been attached and started. The following
example shows how to start a sensor application:

$ns at 5.0 "$app ($i) start \
$sensor ($i)"

VI. PROOF OFCONCEPT: MANET ROUTING WITHIN

A DYNAMIC SENSORNETWORK

This experiment begins to show the types of results
one can achieve from sensor network simulations in ns-2.
Suppose we would like to characterize how well AODV
scales with the size of a sensor network running the
sensor application defined at the end of section IV. We
will look at networks of stationary sensors with infinite
energy placed in a grid withd units of distance between
adjacent nodes. The network size will vary between 50
and 2000 sensor nodes. We will limit the broadcast range
of 802.11 radios and the range of the phenomenon to√

2d2, as shown in Figure 8. Since we are using the
Two-ray Ground radio propagation model, nodes within
this boundary always receive the broadcast and nodes
outside never receive the broadcast.5

We will excite the network with a single phenomenon
node that slowly travels near the perimeter of the net-

4Phenomenon nodes start emanating immediately once the sim-
ulation starts. A delayed start can be realized by reducing the
range of phenomenon broadcasts to such a small area that they are
effectively inaudible to any sensors (unless they occupy the exact
same coordinate in the grid). A phenomenon node can be turned
off this way with a command like,$ns at 6.0 {[$node ($i)
set netif (0)] set Pt 0.0001 }. Pt is the range of the
broadcast, and$i is the node id of the Phenomenon node.

5In reality, this boundary is a random variable due to complex
fading and interference effects.

8

12 13 14 15

18 19 20

22 23 24 25

17

1098

2 3 4 5

7

11

16

21

1

6

d

d

Fig. 8. This figure illustrates the maximum broadcast range used
in our case study. If we use the Two-ray Ground radio propagation
model, then node 13 can never broadcast further than the ideal circle
with radius

√
2d2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 500 1000 1500 2000

La
te

nc
y

(s
ec

)

Number of sensors in the network

Latency Statistics for Small to Large Sensor Networks

average latency
minimum latency

maximum latency

Fig. 9. Latency shown as a function of network size

work. As the grid density increases, the phenomenon
will encounter sensor nodes more frequently. Thus, as
the grid density increases, AODV will flood more route
requests through the network. As the network becomes
more congested, we should observe higher latency and
higher loss rates in sensor reports delivered to the
stationary data collection point. See Figures 9, 10, and
11 for latency, data rate, and loss fraction statistics.

This experiment’s purpose as a proof of concept for
our ns-2 extensions is complete. We have captured details
of the AODV routing protocol through multiple sensor
network simulations, and those results follow our expec-
tations. A more useful result would involve classifying
AODV as better or worse than some other routing
protocol, but this work is left for future research. As
it stands, we have demonstrated AODV performance in
large networks of up to 2000 sensors excited by a mobile
phenomenon. Reproducing the traffic patterns exhibited
in these simulations would be extremely difficult without

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0 500 1000 1500 2000

R
at

e
(k

bp
s)

Number of sensors in the network

Rate Statistics for Small to Large Sensor Networks

average rate
maximum rate

Fig. 10. Data rates shown as a function of network size

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 500 1000 1500 2000

Lo
ss

 (n
um

be
r o

f l
os

t p
ac

ke
ts

 p
er

 2
0s

ec
 p

er
io

d)

Number of sensors in the network

Loss Statistics for Small to Large Sensor Networks

loss

Fig. 11. Loss fractions shown as a function of network size

using similar extensions to ns-2.

VII. F UTURE WORK

Much more effort should be made to improve how
phenomenon emanates. Presently, it follows the behavior
of an 802.11 broadcast, configured with one of the
following radio propagation models:

1) Free Space Model
2) Two Ray Ground Model
3) Shadowing Model

The first two models represent the communication
range as an ideal circle, whose boundary is an absolute
limit on signal range. The Shadowing model applies
a more probabilistic means of determining whether a
receiver on the boundary can receive the signal.

Using a radio propagation model to simulate anything
other than electromagnetic wave propagation is proba-
bly unrealistic. So, the radio propagation model should
be extended to create various phenomenon propagation

9

models that could specifically address the characteristics
of phenomena such as seismic wave propagation or gas
dispersion.

Our work to build a basic framework in ns-2 for trig-
gering a network of sensors with phenomena can lever-
age more direct research in sensor networking protocols
and techniques. Experiments in energy efficient routing
[14] and medium access control [9] will lend themselves
well to this extended ns-2 environment. Trade-offs be-
tween power optimizations and throughput optimizations
of communication protocols could be established in ns-
2. Those characteristics in various sensor management
schemes [15] could be similarly examined.

Directional antennas can improve the capacity of an ad
hoc network [16]. It is also known that topologies can be
configured to optimize energy efficient communication
[17]. Investigating the power saving benefits of dynamic
topologies partially controlled by directional antennas
could be complemented by ns-2’s support for energy
constrained mobile nodes. Results of this research could
be tailored to sensor networks by exciting network traffic
with mobile phenomena, as supported by our extensions
to ns-2. Support for directional antennas in ns-2 has been
contributed by Young-Base Ko, et al [18].

Ns-2 offers great potential for mobile ad hoc sensor
network research. MAC protocols, routing protocols, and
applications can be customized in as much detail as their
real-world counterparts. Throughput, latency, and energy
levels can be gleaned from simulation trace files for
measuring network performance and energy efficiency.
With enough effort, anything is possible. Unfortunately,
a fluent familiarity with ns-2 can be a bear to achieve. It’s
flexibility goes hand-in-hand with a large and compli-
cated architecture. Extending that architecture to create
new protocols or applications can be quite difficult and
time-consuming. Learning how to use its existing capa-
bilities is easier, but still difficult. Any effort to provide
some more intuitive interface than Tcl based scripting to
ns-2’s capabilities would be extremely beneficial to its
users.

VIII. C ONCLUSION

The primary contribution of this research is an ex-
tended capability in ns-2 to invoke network traffic con-
sistent to the patterns expected for sensor networks.
Coordinating these unique traffic patterns in ns-2 without
extensions similar to ours would require very much effort
for medium to large networks. Aside from generally
increasing the flexibility of ns-2, this work facilitates our
objective to evaluate how well current MANET routing
protocols support the requirements of various sensor
network applications.

REFERENCES

[1] J. M. Kahn, R. H. Katz and K. S. J. Pister. “Mobile Networking
for Smart Dust,” in the ACM/IEEE International Conference
on Mobile Computing and Networking (MobiCom 99), Seattle,
WA, August 1999.

[2] µ-Adaptive Multi-domain Power aware Sensors at MIT.
http://www-mtl.mit.edu/research/icsystems/uamps/

[3] Wireless Integrated Sensor Networks at UCLA.
http://www.janet.ucla.edu/WINS/

[4] “H-MAS: A Heterogeneous, Mobile, Ad-hoc Sensor-Network
Simulation Environment,” in the Seventh Annual Swarm
Users/Researchers Conference, Notre Dame, Indiana, April
2003.

[5] Park, Savvides, Srivastava. “SensorSim: A Simulation
Framework for Sensor Networks.”
http://nesl.ee.ucla.edu/projects/sensorsim/

[6] The SWARM Development Group.
http://www.swarm.org

[7] The Network Simulator - ns-2.
http://www.isi.edu/nsnam/ns/

[8] NRL’s OLSR implementation for ns-2.
http://pf.itd.nrl.navy.mil/projects/olsr/

[9] Wei Ye, John Heidemann, Deborah Estrin. “An Energy-Efficient
MAC Protocol for Wireless Sensor Networks,” in the Proceed-
ings of the IEEE INFOCOM, 2002.

[10] H. Yang, B. Sikdar. “A Protocol for Tracking Mobile Targets
using Sensor Networks,” in the Proceedings of the First IEEE
International Workshop on Sensor Network Protocols and Ap-
plications, pp. 71-81, Anchorage, Alaska, May 2003.

[11] The ns Manual.
http://www.isi.edu/nsnam/ns/ns-
documentation.html

[12] The Doxygen documentation system.
http://www.doxygen.org

[13] NRL’s Sensor Network Extension to ns-2.
http://nrlsensorsim.pf.itd.nrl.navy.mil/

[14] Ahmed Safwat, Hossam Hassanein, Hussein Mouftah. “Energy-
Aware Routing in MANETs: Analysis and Enhancements,” in
the Proceedings of The Fifth ACM International Workshop on
Modeling, Analysis and Simulation of Wireless and Mobile
Systems in conjunction with ACM MobiCom 2002, Atlanta,
Georgia, September 2002.

[15] Deborah Estrin, Ramesh Govindan, John Heidemann, Satish
Kumar. “Next Century Challenges: Scalable Coordination in
Sensor Networks,” in the Proceedings of the Fifth Annual
ACM/IEEE International Conference on Mobile Computing and
Networking, pp. 263-270, Seattle, Washington, August 1999.

[16] Siuli Roy, Dola Saha, S. Bandyopadhyay, Tetsuro Ueda, Shin-
suke Tanaka. “A Network-Aware MAC and Routing Protocol for
Effective Load Balancing in Ad Hoc Wireless Networks with
Directional Antenna,” in the Proceedings of the Fourth ACM
International Symposium on Mobile Ad Hoc Networking and
Computing, pp. 88-97, Annapolis, Maryland, June 2003.

[17] Ayad Salhieh, Jennifer Weinmann, Manish Kochhal, Loren
Schwiebert. “Power Efficient Topologies for Wireless Sensor
Networks,” in the Proceedings of the International Conference
on Parallel Processing, pp. 156-163, Valencia, Spain, September
2001.

[18] Y. B. Ko, V. Shankarkumar, N. H. Vaidya. “Medium Access
Control Protocols Using Directional Antennas in Ad Hoc Net-
works,” in the Proceedings of the IEEE INFOCOM 2000 -
Volume 1, pp. 13-21, Tel-Aviv Israel, March 2000.

